Inhaltsverzeichnis

Zuverlässige Wasserstraßen
 Vorwort der Redaktion ... 5

Schiffahrtsbehinderungen auf der Main-Donau-Wasserstraße
 Dr. Hartwig Hauck, Geschäftsführendes Vorstandsmitglied des
 Deutschen Wasserstraßen- und Schiffahrtsvereins Rhein-Main-Donau e.V. 8

Schiffahrtsbetrieb auf den Binnenwasserstraßen bei Eis
 Josef Möbius, Möbius Bau-Gesellschaft (GmbH & Co.) 17

DBR-Wintertechnik hilft der Binnenschifffahrt
 Hans-Wilhelm Dünner, Geschäftsführer der Deutschen Binnenreederei GmbH 26

Binnenschifffahrt bei Eisbedeckung
 Dr.-Ing. Karl-Heinz Rupp, Hamburgische Schiffbau-Versuchsanstalt GmbH 30
Zuverlässige Wasserstraßen

Wasserstraßen offenhalten

Schon heute kann jedoch positiv vermerkt werden: Die Wasser- und Schifffahrtsverwaltung sieht es mehr denn je als ihre Aufgabe an dafür zu sorgen, daß die Binnenschifffahrt ihre Verkehre zuverlässig durchführen kann.

Technische Neuerungen

Wichtig sind dabei auch technische Neuerungen der Eisabrechung, über die dieses Mitteilungsblatt eingehend informiert.

Bei dem Eisschredder der Firma Möbius handelt es sich um ein Gerät, bei dem auf eine dauerrotierende Walze Schlegel aufgebracht sind, die das Eis in Stücke schlagen. Dabei verbleiben zerkleinerte Eisstücke, die vom Schiffskörper einfach zur Seite geschoben werden können, ohne Schraube oder Schiffsrand zu gefährden. Das wird in einem ausführlichen Beitrag der Firma Möbius dargelegt.

Eine Darstellung der Schifffahrtsbehinderungen auf der Main-Donau-Wasserstraße in den zurückliegenden Jahrzehnten geht diesen Beiträgen voraus, um einen Eindruck von den unterschiedlichen Beeinträchtigungen zu vermitteln. Die Behinderungen an anderen Wasserstraßensystemen weichen hiervon maßgeblich ab und würden eine jeweils gesonderte Darstellung erfordern.

Verstärkte Kommunikation notwendig

verbesserte Information kommen. Zum einen müssen möglichst zuverlässige und rechtzeitige Mitteilungen darüber erfolgen, wo und zu welcher Zeit Wasserstraßen trotz Eis noch befahren werden können. Auch Beginn und Ende von Eissperrungen müssen jeweils aktuell abrufbar sein. Zum anderen sollte aber auch der einzelne Schiffer seinen Standort, Fahrtziel und PS-Leistung etc. mitteilen, um eventuelle Eisbrecherhilfe zu erhalten und um Konvoifahrten zusammenstellen zu können.

Über die Ergebnisse dieser Erprobungsphase werden die übrigen Wasser- und Schiffs fahrtsdirektionen eingehend unterrichtet. Anschließend ist ein WSD-übergreifendes Gesamtkonzept vorgesehen. Über die Erfolge dieser Bemühungen werden wir wieder berichten.

Die Redaktion
Schiffahrtsbehinderungen auf der Main-Donau-Wasserstraße

Dr. Hartwig Hauck,
Geschäftsführendes Vorstandsmitglied des Deutschen Wasserstraßen- und Schiffahrtsvereins Rhein-Main-Donau e.V.

Die Binnenschifffahrt, die sich mit Flüssen und Kanälen naturnaher Verkehrswege be-

dient, ist dementsprechend auch naturbe-

dingten Behinderungen ausgesetzt. In die-

sem Zusammenhang sind Eisingang, Niedrig-

erwasser und auch Hochwasser zu nennen.

Von solchen Beeinträchtigungen sind die
einzelnen Wasserstraßensysteme in sehr
differenzierter Weise betroffen. So ist die
Schifffahrt auf dem Rhein deutlich weniger
beeinträchtigt. Der Rhein ist seit Jahrzehnt-
en nicht mehr zuverlässig, und er ist als
großer Strom mit starker und abschätzbarer
Wasserführung für die Beeinträchtigungen
der Schifffahrt durch relativ kurze Niedrig-
erwasserperioden viel weniger anfällig als
Flüsse mit geringerer Wasserführung und
größerem Gefälle, wie z.B. die obere Donau.

Die bloße Fahrrinnentiefe am häufig zu

Vergleich zitierten „Binger Loch“ ist allein

ein brauchbarer Maßstab, da die hydrauli-

schen und nautischen Bedingungen andere

sind.

Die Binnenschifffahrt auf der Main-Donau-

Wasserstraße ist von solchen naturbeding-
ten Behinderungen viel stärker betroffen.

Zwar sind die Verhältnisse am gestauten

Main, am Main-Donau-Kanal und an der
deutschen Donau jeweils unterschiedlich. Da

jedoch der Fernverkehr, der über alle drei

Abschnitte geht, einen großen Anteil hat,

wirkt sich insoweit die Schwäche eines Ab-

schnittes auch auf die übrigen aus.

Nachfolgend werden Schiffahrtsbe hinderungen an der Main-Donau-Wasserstraße durch

Niedrigwasser, Hochwasser und Eisingang an-

hand empirischer Beispiele über einen län-

geren Zeitraum für ausgewählte Jahre be-

trachtet.¹

¹ Statistische Angaben wurden freundlicherweise von der Wasser- und Schifffahrtsdirektion Süd und dem Wasser- und Schifffahrtsamt Regensburg zur Verfügung gestellt

Starke Behinderung durch Niedrigwasser

Was die Schiffahrtsbehinderung durch Nied-

rigwasser betrifft, so ist hiervon auf der Main-

Donau-Wasserstraße nurmehr die Engpaß-

erwasserstraßene, Straubing-Vilshofen betroffen, aber

dies in besonders verheerender Weise. Die-

se Beeinträchtigungen sind gegeben, die Si-

cherheit und Zuverlässigkeit der Binnen-

schifffahrt in Frage zu stellen und zeitweis-

eden Schiffsverkehr praktisch zum Erlei-

gen zu bringen. Das hat gravierende Folgen

für die Wirtschaftlichkeit und darüber hinaus

die Wettbewerbsfähigkeit des umweltscho-

nenden Verkehrsträgers Binnenschiff.

In welchem Ausmaß für längere Perioden

wiederkehrende Niedrigwasser die Schifffahrt

im Streckenabschnitt Straubing-Vilshofen

tatsächlich beeinträchtigen, zeigen die Un-

tersuchungen des sogenannten Regulie-

rungsniereingewassern (RNW) der maßgebend-

en Pegel. Der Pegel Pfelling für den

Streckenabschnitt Straubing-Deggendorf,

der Pegel Hofkirchen für den Streckenab-

schnitt Deggendorf-Vilshofen. Bekanntlich

herrschen an diesen beiden Donau-Ab-

schnitten durchaus unterschiedliche fluß-

morphologische und hydraulische Verhält-

nisse aufgrund des unterschiedlichen Gefäl-

les der Donau, aber auch der größeren Was-

serführung nach Einmündung der Isar. Au-

ßerdem handelt es sich in dem Abschnitt

Deggendorf-Vilshofen teilweise um eine

Feissstrecke.

Ein RNW beim Pegel Pfelling von 2,98 m

entspricht einer Fahrrinnentiefe von 2 m für

die Strecke Straubing-Deggendorf. Ein RNW

beim Pegel Hofkirchen von 2,15 m entspricht

einer Fahrrinnentiefe von 2 m für die Strecke
Deggendorf-Vlishofen. Hierbei handelt es sich um eine Betrachtung der Wasserstände, wobei unterstellt wird, daß die Wasserstands-/Abflußverhältnisse sich in relativ kurzen Untersuchungszeiträumen nicht verändern und somit vernachlässigt werden können. Eine Sondersituation bezüglich der Fahrriiintiefe bei unterschiedlichen Wasserständen ist im Bereich „Bürgerfeld“ gegeben, wie die Abbildung Nr. 1 zeigt.

Danach war im Kalenderjahr 1991 in dem Abschnitt Straubing-Deggendorf in den Monaten August bis Dezember an 85 Tagen eine Fahrriiintiefe von weniger als 2 m, in der Regel aber erheblich darunter, gegeben. Im Jahr 1992 zeigt der Pegel Pffeling in den Monaten August, September und Oktober an 55 Tagen eine Fahrriiintiefe von weniger als 2 m, meist aber noch deutlich darunter. Und im Kalenderjahr 1997 ergibt sich nach den Messungen des Pegels Pffeling bis Redaktionsschluß dieses Mitteilungsblattes Mitte November insbesondere in den Monaten August, September, Oktober und November schon an 66 Tagen eine Fahrriiintiefe von weniger als 2 m, an über 54 Tagen deutlich darunter.

Eine Fahrriiintiefe von 2 m läßt nurmehr eine Abladetiefe von 1,70 m zu. Tatsächlich ist aber die Abladetiefe meist wesentlich geringer, weil ja die Fahrriiintiefe von 2 m häufig gar nicht erreicht wird, Felsstrecken eine größere Sicherheitsreserve erfordern und bei Bergfahrt ein noch stärkerer Absinken zu berücksichtigen ist.

Wie unhaltbar diese Situation für die Binnenschifffahrt ist, wird deutlich, wenn man sich vergegenwärtigt, daß die für die Strecke Straubing-Vlishofen angestrebte Abladetiefe von 2,50 m, die eine Fahrriiintiefe von 2,80 m erfordert, auch schon ein unter dem Optimum liegender reduzierter Wert ist. Damit wird klar, daß unter den derzeit gegebenen Niedrigwasser-Verhältnissen eine geordnete Binnenschifffahrt nicht mehr möglich ist, geschweige denn eine wirtschaftliche. Unter diesen Verhältnissen können an manchen Tagen größere Schiffseinheiten kaum leer fahren. Das bedeutet aber über die nicht verkraftbaren wirtschaftlichen Verluste hinaus den Aus schluß der Binnenschifffahrt aus den Logistikketten der modernen Verkehrswirtschaft.

Ihren auch für den Laien einleuchtenden Ausdruck findet diese Situation in Havarien serien auf der freifließenden Donau, über welche die regionalen Tageszeitungen des Donauraumes eindrucksvoll berichten. So ist es seit August in der Problemstrecke Straub ing-Vlishofen zu zehn Schiffslücken mit 19 beteiligten Fahrzeugen gekommen. Hinzu kommt eine Vielzahl von Grundberührungen und Beschädigungen am Schiff, die gar nicht erst publik und deshalb nicht offiziell behandelt werden.

Diese Havarien sind nicht Ausdruck mangelnder nautischer Fähigkeiten oder fehlenden Verantwortungsbewußtseins der Schiffs führer, wie es der Bund Naturschutz leichtfertig behauptet, sondern das Bemühen, nach umfangreicher Leichterung Restladungen trotz unzureichender Schiffsverhältnisse noch durchzubekommen, um die Geschäftsverbindungen zu erhalten und die Existenz zu retten.
Fahrrinnentiefen der Donau
"Bürgerfeld" bei Vilshofen
Schifffahrtspolizeilicher Hinweis des WSA Regensburg Nr. 2/1994

Abb. 1
Quelle: WSA Regensburg/Schiller
Wasserstandsganglinien der Donau 1997

[Graph showing water levels with various markers and dates from January to December, with phases labeled HSW 620 Pfell, MW 409 Pfell, NW 216, NW 288, and Fahrrinnentiefe 2 m.]
Während dieses Problem durch einen staudestützten Ausbau der Donau gänzlich beseitigt werden könnte, sind die Behinderungen durch Hochwasser und Eis nur in begrenztem Umfang besserbar.

Hochwasser
Mit dem Naturereignis Hochwasser beschäftigt sich das Mitteilungsblatt Nr. 85/86 eingehend. Im vorliegenden Heft geht es speziell um die Behinderung der Schifffahrt durch Hochwasser auf der Main-Donau-Wasserstraße. Die Schifffahrtssperren auf der deutschen Donau wegen Hochwasser dokumentiert Abb. 5. Sie reichen zwar nicht annähernd an die Behinderungen durch Niedrigwasser heran, sind aber dennoch in manchen Jahren gravierend, wobei die einzelnen Streckenbereiche unterschiedlich betroffen sind. Auch auf dem Main sind die Schifffahrtssperren wegen Hochwasser in einzelnen Jahren erheblich (Abb. 6).
Grundsätzlich ist festzustellen, daß durch den Ausbau der Flüsse die Hochwassersituation sich für die Schifffahrt nicht schlechter darstellt, aber auch nicht merklich besser.

WSA Regensburg

Sperrtage auf der deutschen Donaustrecke wegen Eis

<table>
<thead>
<tr>
<th>[Jahre]</th>
<th>[Tage]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>0</td>
</tr>
<tr>
<td>1980</td>
<td>0</td>
</tr>
<tr>
<td>1981</td>
<td>0</td>
</tr>
<tr>
<td>1982</td>
<td>17</td>
</tr>
<tr>
<td>1983</td>
<td>20</td>
</tr>
<tr>
<td>1984</td>
<td>21</td>
</tr>
<tr>
<td>1985</td>
<td>20</td>
</tr>
<tr>
<td>1986</td>
<td>15</td>
</tr>
<tr>
<td>1987</td>
<td>10</td>
</tr>
<tr>
<td>1988</td>
<td>5</td>
</tr>
<tr>
<td>1989</td>
<td>0</td>
</tr>
<tr>
<td>1990</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
</tr>
</tbody>
</table>

Streckenschnitte:

- **Kehl-Rbg** = Kelheim bis Regensburg
- **Rgb-Degg** = Regensburg bis Deggendorf
- **Degg-Pass** = Deggendorf bis Passau
- **Pass-Joch** = Passau bis Jochenstein

Streckenbereiche:

- Kehl-Rbg
- Rgb-Degg
- Degg-Pass
- Pass-Joch

Abb. 5
Schifffahrtssperren auf Main und Main-Donau-Kanal wegen Hochwasser in Tagen

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>13</td>
<td>11</td>
<td>18</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>16</td>
<td>19</td>
<td>17</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>19</td>
<td>19</td>
<td>22</td>
<td>22</td>
<td>30</td>
<td>32</td>
<td>26</td>
<td>24</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>18</td>
<td>14</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 6

Behinderung durch Eis

Die Schifffahrtseinstellungen wegen Eis sind für die Main-Donau-Wasserstraße, je gesondert für Main, Main-Donau-Kanal und Donau, vom Winter 1980/81 bis 1996/97 in einer Gesamtübersicht dargestellt (Abb. 7). Diese zeigt, daß der Main-Donau-Kanal am stärksten durch Eis beeinträchtigt ist. Hier sind die Schifffahrtseinstellungen am häufigsten und in der Regel auch am längsten. Während es am Main seit dem Winter 1980/81 in 11 Jahren und an der Donau immerhin in 10 Jahren keine Schifffahrtseinstellungen wegen Eis gab, war dies beim Main-Donau-Kanal nur in acht Jahren der Fall. Allerdings ist zu betonen, daß mit Fertigstellung des Main-Donau-Kanals Schifffahrtssperren dort für die Gesamtstrecke relevant sind.

Die Dauer der Schifffahrtseinstellungen wegen Eis ist beim Main-Donau-Kanal meist etwas länger als bei Main und Donau. So z.B. im Winter 1996/97 mit 44 Tagen gegenüber 28 Tagen beim Main und 30 Tagen bei der Donau. Besonders gravierend war dieser Unterschied im Winter 1995/96, als der MD-Kanal insgesamt 44 Tage gesperrt war, während Main und Donau überhaupt keine Schifffahrtseinstellung wegen Eis hatten. 47 Tage war gleichzeitig die längste Schifffahrtseinstellung wegen Eis, die im Untersuchungszeitraum beim damals erst bis Nürnberg reichenden MD-Kanal im Winter 1984/85 eintrat. Die längsten Unterbrechungen durch Eis betrugen im Betrachtungszeitraum beim Main 36 Tage und bei der Donau 38 Tage, jeweils im Winter 1984/85.

Eine Tendenz zu häufigeren und längeren Schifffahrtseinstellungen durch Eis auf der Main-Donau-Wasserstraße ist im Zeitablauf nicht zu erkennen, trotz der langen Einstellungsdauer beim MD-Kanal in den Wintern.
<table>
<thead>
<tr>
<th>Jahr/ Winter</th>
<th>Main</th>
<th>Main-Donau-Kanal</th>
<th>Donau</th>
<th>Dauer/Tage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980/81</td>
<td>keine</td>
<td>keine</td>
<td>12.01.-13.01. / 31.01.-02.02.</td>
<td>0 0 5</td>
</tr>
<tr>
<td>1981/82</td>
<td>13.01.-21.01.</td>
<td>14.01.-29.01. / 03.02. - 10.02.</td>
<td>16.01.-25.01.</td>
<td>9 24 10</td>
</tr>
<tr>
<td>1982/83</td>
<td>keine</td>
<td>keine</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>1983/84</td>
<td>keine</td>
<td>keine</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>1984/85</td>
<td>08.01.-28.01. / 15.02. - 29.02.</td>
<td>08.01.-03.02. / 14.02. - 05.03.</td>
<td>07.01.-03.02. / 16.02. - 25.02.</td>
<td>38 47 38</td>
</tr>
<tr>
<td>1985/86</td>
<td>23.02.-06.03.</td>
<td>24.02.-09.03.</td>
<td>25.02.-05.03.</td>
<td>12 14 9</td>
</tr>
<tr>
<td>1986/87</td>
<td>15.01.-27.01. / 01.02. - 08.02.</td>
<td>15.01.-10.02.</td>
<td>13.01.-11.02.</td>
<td>21 27 30</td>
</tr>
<tr>
<td>1987/88</td>
<td>keine</td>
<td>keine</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>1988/89</td>
<td>keine</td>
<td>keine</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>1989/90</td>
<td>keine</td>
<td>keine</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>1990/91</td>
<td>15.02.-22.02.</td>
<td>08.02.-17.02.</td>
<td>keine</td>
<td>8 10</td>
</tr>
<tr>
<td>1991/92</td>
<td>keine</td>
<td>keine</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>1992/93</td>
<td>05.01.-07.01.</td>
<td>05.01.-08.01.</td>
<td>keine</td>
<td>3 4 0</td>
</tr>
<tr>
<td>1993/94</td>
<td>keine</td>
<td>keine</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>1994/95</td>
<td>keine</td>
<td>20.01.</td>
<td>keine</td>
<td>0 1 0</td>
</tr>
<tr>
<td>1995/96</td>
<td>keine</td>
<td>06.01.-07.01. / 19.01. - 03.03.</td>
<td>keine</td>
<td>0 47 0</td>
</tr>
<tr>
<td>1996/97</td>
<td>30.12.-29.01.</td>
<td>30.12.-11.02.</td>
<td>29.12.-27.01.</td>
<td>28 44 30</td>
</tr>
</tbody>
</table>

Abb. 7

Wartungszeiten verkürzen

Schiffahrtsbetrieb auf den Binnenwasserstraßen bei Eis

Josef Möbius,
Möbius Bau-Gesellschaft (GmbH & Co.)

Unter diesen Umständen wird von den Wasser- und Schiffahrtsverwaltungen häufig das Eissbrechen eingestellt, weil befürchtet wird, daß die Verhältnisse nur verschlechtern und die Sperrzeiten für die Schiffahrt verlängert werden. Außerdem lehnt es die Binnenschiffahrt erfahrungsgemäß ab, durch massives Scholleneis zu fahren, selbst wenn Eissbrecher die Schiffahrt unterstützen und das Eis mehrfach brechen. Die in den Strecken durch Scholleneis entstehenden Schwierigkeiten vergrößern sich im Bereich der Abstiegsbauwerke erheblich, da die Eisschollen in den Vorhöfen, Schleusenkammern und Hebewerkströgen kaum verdrängt werden können und somit die Schiffe und die baulichen Anlagen beschädigt werden können. Außerdem kann es an den Toren, Umlaufschützen, Antrieben etc. zu Vereisungen und Störungen kommen.

Das Risiko mit dem Schiff festzukommen, oder Schäden am Schiff, an den Antriebs- und Steuereinrichtungen hinnehmen zu müssen, wird unübersehbar, was besonders für die anfälligen Leerschiffe gilt. Trotz der wirtschaftlichen Einbußen bleiben viele Binnenschiffer dann lieber liegen und warten ab. Es ist zu vermuten, daß sich viele Binnenschiffer mit der Übernahme von Frachtaufträgen in der Winterzeit zurückhalten, da sie befürchten, daß sie diese Frachten evtl. nicht termin- bzw. vereinbarungsgemäß für den Auftraggeber durchführen können, daß die Kosten für die Fahrten bei Behinderungen durch Eis erheblich ansteigen, die über die Frachtrate dann nicht gedeckt werden und daß das Risiko von Schäden am Schiff unerkalkulierbar wird.

Die Unternehmen, die diese großen Investitionen durchführen wollen, werden Zuschüreungen verlangen, daß Schifffahrtssperren und größere Behinderungen durch Eis zukünftig vermieden werden. Der zeitweise Ausfall des Verkehrsweges Wasserstraße stellt die Wirtschaftlichkeit, die Verlässlichkeit und die Entwicklung dieses Verkehrsweges in Frage.

Die Schifffahrtssperren führen dazu, daß Gütermengen von der Wasserstraße auf die Bahn oder die Straße verlagert werden, die dann teilweise längerfristig oder aufgrund neuer vertraglicher Bindungen auch auf Dauer verloren sind.

Auch in Hinsicht auf die Umweltbelastung ist die zeitweise Einstellung des Schifffahrtsbetriebes sehr bedenklich, da durch die Verlagerung von Gütermengen auf die Straße zusätzliche Umweltbelastungen und Unfallrisiken heraufbeschworen werden, die zu einer Steigerung der externen Kosten bei der Straße führen.

Die Mehrbelastung der Binnenschifffahrt bzw. deren Verluste auf Grund von Schifffahrtssperren und Behinderungen durch Eis sind sehr viel höher zu veranschlagen. Bei täglichen Ausfallkosten von etwa DM 1.200,– pro Schiff ergibt sich bei 850 aufliegenden Binnenschiffen ein Betrag von rd. 1,0 Mio. DM pro Tag, bei 35 Tage dauernder Schifffahrtssperre.
fahrtssperre also etwa 35 Mio. DM an Folgekosten bei der Binnenschifffahrt.
Die Unterbrechung und Einstellung des Schifffahrtsbetriebes auf den Binnenwasserstraßen in der Winterzeit muß vermieden werden!
Es besteht also die Notwendigkeit, effektive Methoden zu entwickeln und anzuwenden, um damit einbedingte Schifffahrts sperren zu vermeiden und die Behinderungen der Schifffahrt bei Eis zu minimieren. Mit der Entwicklung des neuen Verfahrens der „Eiszerkleinerung mit Eischreddern“ hat die Firma J. Möbius diese Aufgabe gelöst.
Das Prinzip des von Firma Möbius entwickelten Verfahrens der „Eiszerkleinerung mit Eischreddern“ besteht darin, daß das Eis von an rotierenden Walzenköpfen befestigten Schlag- bzw. Spaltwerkzeugen zerkleinert wird. Die beim Einsatz der Eis schredder entstehenden Eislücke sind relativ klein. Sie lassen sich von den Schiffen leicht verdrängen und umlagern, so daß sie für die Schifffahrt keine Behinderung, auch nicht beim Schleusenbetrieb, darstellen.
Die weitgehende Zerkleinerung des Eises wird beim Einsatz der Möbius-Eis schredder dadurch erreicht, daß die im relativ engen Abstand auf den Walzenkörper angeordneten Schlag-Spaltwerkzeuge mit großer Geschwindigkeit auf das Eis treffen und dieses abspalten und zerstücken. Der Walzenkopf mit den daran befestigten Werkzeugen hat eine verhältnismäßig große Masse, die bei der hohen Umdrehungszahl eine so große Rotationsenergie entwickelt, daß durch das Abtrennen der Eislücke kein Abriss der Schredderwalze erfolgt. Die Zerkleinerungswirkung und die Leistung des Eis schredders wird auf die jeweilige Eisstärke und Eisfestigkeit abgestimmt, insbesondere durch Veränderung der Umdrehungszahl des Walzenkörpers und durch Anpassung der austauschbaren Spaltwerkzeuge. Die Veränderung der Drehzahl erfolgt durch entsprechende Regelung der Hydraulik-Antriebsmotorren bzw. durch Anpassung der Untersetzung. Die Spaltwerkzeuge sind so an dem Walzenkörper über Aufnehmer befestigt, daß sie ausgetauscht werden können, um auf wechselnde Eisstärken und Eisfestigkeiten reagieren und dem Verschleiß entgegenwirken zu können.
Die Zerkleinerungswirkung der Eis schredder ist auch bei zuvor mit Eisbrechern gebrochem Eis, d.h. auch bei Eisbrechen gegeben. Der erste Eis schredder, als Anbaugerät zu einem auf einem Ponton stehenden Hydraulikbagger gebaut, wurde bereits im Winter 96 eingesetzt. Dieser Prototyp war Grundlage für die Entwicklung von drei weiteren, unterschiedlich ausgelegten Anbauscheidern der Firma Möbius. Diese Geräte wurden in diesem Winter wie folgt eingesetzt:
MAS 1 – Anbauschredder 1 – am Liebherr Bagger 974 auf dem Ponton MP 14 - Einsatz auf dem Mittellandkanal zwischen Minden und Hannover.
MAS 2 – Anbauschredder 2 – am Caterpillar Bagger 350 auf dem Ponton MS 2 mit Fahrantrieb - Einsatz auf dem Elbe- Seitenkanal, insbesondere im Bereich des Hebewerkes Scharmebeck und der Schleuse Uelzen.
MAS 4 – Anbauschredder 4 wurde noch im Januar dieses Winters fertiggestellt; kam aber nicht mehr zum Einsatz.
MWS 1 – Walzenschredder 1, den die Firma Möbius als großen und besonders leistungs fähigen Eis schredder entwickelt und in wenigen Wochen gebaut hat, konnte am 31.01.1997 den Vertretern der Wasser- und Schifffahrtsdirektion Mitte, West, Ost und Süd
sowie Vertretern der Bundesanstalt für Wasserbau (BAW) und der Hamburgischen Schiffbau-Versuchsanstalt (HSV) vorgeführt werden.

Dieser Walzenschredder hat bei einer Arbeitsbreite von 11 m und einer Antriebsleistung von 750 kW auf Anhieb bei einer 30–40 cm starken geschlossenen Eisdecke eine Vortriebsgeschwindigkeit von 5,6 km/h erreicht. Dabei ist das Eis so stetig, gleichmäßig und weitgehend zerkleinert worden, daß das Eis nach Durchfahrt des Walzenschredders für die Schifffahrt keine Behinderung darstellte.

Das Gerät hat bis zum 08.02.1997, an diesem Tage wurde das Gerät wegen Tauwetters aus dem Betrieb genommen, seine Zuverlässigkeit und besondere Leistungsfähigkeit auf 300 km Streckeneinsatz unter Beweis gestellt. Dieser Einsatz erfolgte ohne Ausfälle oder Schwierigkeiten. Dabei hat der Walzenschredder nicht nur gewachsenes Eis, sondern auch von Eisbrechern hinterlassenes Scholleneis wirkungsvoll und bei hoher Leistung nachzerkleinert.

Über die verschiedenen Einsätze sind umfangreiche Erfahrungen und Erkenntnisse gesammelt, so daß die Anforderungen an das neue System sicher eingeschätzt und die maschinenotechnischen Auslegungen beherrscht werden.

Dazu sind die Randbedingungen wie Eisthärke und Eisfestigkeit, der Zerkleinerungsgrad, die Vortriebsgeschwindigkeit und weitere Voraussetzungen festzulegen, z.B. ob es sich um gewachsenes oder vorgebrochenes Eis handelt.

Der Einsatz des großen Walzenschredders hat ergeben, daß dieser geeignet ist, auf großen Strecken das Eis bei Vortriebsgeschwindigkeiten von 5–6 km/h so zu zerkleinern, daß die Schifffahrt ohne Behinderung betrieben werden kann.

Es kann davon ausgegangen werden, daß die Eisschredder auch sehr dickes und sehr hartes Eis zerkleinern. Dies konnte im Bereich Sachsenhagen/Polthagen des MLK nachgewiesen werden, da hier mehr als 60 cm starkes und sehr hartes Eis von dem Anbauschredder 1 bewältigt wurde. In diesem Bereich mußte übrigens zur gleichen Zeit der Versuch, das Eis mit Eisbrechern zu brechen, aufgegeben werden.

Der große Walzenschredder hat wegen seiner großen Rotationssenergie und Leistung darüber hinaus noch sehr viel bessere Voraussetzungen, um noch dickeres und festeres Eis zu zerkleinern. Bei dem ersten Einsatz des Walzenschredders konnten wegen der Kürze der zur Verfügung stehenden Bauzeit die Spaltwerkzeuge nicht eingesetzt werden, so daß lediglich mit den Aufnehmem gearbeitet wurde. Da es schon hiermit mühenlos gelang, das Eis bei hoher Vortriebsgeschwindigkeit stark zu zerkleinern, kann mit Sicherheit davon ausgegangen werden, daß mit der vorgesehenen Ausstattung des Schredders mit schweren Spaltwerkzeugen und beim Fahren mit der geplanten Drehzahl die entsprechende Eiszerkleinerung und Vortriebsgeschwindigkeit auch bei sehr viel stärkeren Eismächtigkeiten und größeren Eisfestigkeiten erreicht werden wird.

Die Zerkleinerungswirkung und die Leistung der Anbauschredder könnte erheblich verbessert werden. Der Anbauschredder 3 hat im östlichen Teil des Mittellandkanals Streckenleistungen von 2.000 m/h bei Arbeitsbreiten von 15 bis 20 m erreicht. Die Anbauschredder sollten ergänzend zum großen Walzenschredder eingesetzt werden, und zwar insbesondere im Bereich der Vorhafen, der Schleusenanlagen bzw. Hebewerke, im Bereich der Liegestellen, der Hafenanlagen etc. Zielsetzung der Entwicklung und des Einsatzes der Eisschredder ist, daß zukünftig...
Schiffahrtsperren auf den Wasserstraßen gar nicht erst notwendig werden oder die Behinderungen der Schifffahrt minimiert werden.

Dazu ist erforderlich, daß die Eisschredder, insbesondere die Walzenschredder, rechtzeitig zum Winteranfang an bestimmten Stellen der Wasserstraßen bereitgestellt werden, um dann bei Eisbildung kurzfristig mit dem Einsatz beginnen zu können, da der Einsatz sonst zu erheblichen Mehrkosten durch aufwendigen Landtransport der Geräteeinheiten führt. Der Einsatz der Eisschredder soll, entsprechend der Eisbildung, mehr oder weniger durchgehend erfolgen. Das sich bildende Eis soll wiederholt zerkleinert und dabei der Schifffahrtsbetrieb durchgehend aufrechterhalten werden. Der ununterbrochene Betrieb der Schifffahrt und der gleichzeitige Einsatz der Schredder ergänzen sich dabei.

Sollte es während der Betriebsruhe über Weihnachten und Neujahr zu einer stärkeren Eisbildung kommen, wird das Eis mit den Eisschreddern bei einer kurzen Vorlaufzeit zur planmäßigen Wiederaufnahme der Schifffahrt zerkleinert und danach durch kontinuierlichen Einsatz der Eisschredder die Schifffahrt aufrechterhalten.

Im Gegensatz zu den bisherigen Erfahrungen, daß nach Betriebsruhe und Betriebseinstellung der Schifffahrtsbetrieb erst nach einsetzendem Tauwetter (in der Regelfall 14 Tage Nachlaufzeit bis zur Aufhebung der Schifffahrtsperre) wieder aufgenommen werden kann, wird mit der Anwendung des neuen Möbius-Konzeptes der planmäßige Schifffahrtsbetrieb gewährleistet.

Beiden Einsätzen dieses Winters hat die Binnenschifffahrt jeweils positiv reagiert, indem sie unmittelbar nach Durchfahrt der Eisschredder der Firma Möbius den Schifffahrtsbetrieb wieder aufgenommen hat.

Die Erfahrungen der Wasser- und Schifffahrtsverwaltung mit dem Einsatz von Eisbrechern führen bei anhaltendem Frostwetter zur Einstellung des Eisbrechens und zur Schifffahrtsperre. Maßgeblich hierfür ist, daß bei anhaltendem Frostwetter die Schollen größer werden, die durch die Verdrängungswirkung des Eisbrechers übereinandergeschoben werden, so daß sich große und dicke Eisschollen bilden, die zu schichtartig zusammengefrorenen entsprechend stärkeren Eisdecken oder gar zu Eisbarrieren führen. Bei einsetzendem Tauwetter verlängert sich dann der Zeitbedarf bis zur Aufhebung der Schifffahrtsperre erheblich. Die Einstellung des Eisbrechens wird auch damit begründet, daß die durchgehende isolierende Eisdecke zerstört wird, das teilweise etwas wärmere aus der Tiefe hochgerissene Wasser schneller abkühlt und ebenfalls gefriert und damit eine verstärkte Eisbildung befürchtet wird.

Eine vermehrte Eisbildung bei anhaltendem Frostwetter ist bei dem Eisschreddereinsatz nicht festgestellt worden. Das zerkleinerte Eis fügt sich nach Durchfahrt des Schredders oder eines Schifffes wieder so zusammen, daß dadurch eine isolierende Schicht aus geschreddertem Eis zwischen der kalten Luft und dem Wasser gebildet wird. Die isolierende Wirkung des geschredderten Eises beruht darauf, daß das zerkleinerte Eis viele Hohlräume und Lufteinschlüsse enthält und damit die Wärmeleitfähigkeit erheblich reduziert wird.

Eine vorteilhafte Wirkung beim Einsatz des Walzen-Eisschredders ist, daß die Arbeitsleistung des Eisschredders zu einem Wärmeeintrag führt. Diese Wirkung wird noch dadurch verstärkt, daß die Schredderwalze durch eine Haube rundum abgedeckt ist und in den dadurch abgeschlossenen Raum die Abwärme und Abgase der Antriebsaggrega-
te eingeblasen werden. Dadurch wird die über dem Eis liegende Kaltluftschicht verdrängt und erwärmte Luft in die geschredderte Eismasse eingewirbelt. Gleichzeitig wird damit eine Vereisung des Schredders bzw. der Abdeckhaube wirksam verhindert und eine wesentliche Lärmdämpfung erreicht.

Die in verschiedenen Horizonten über, in und unter dem Eis gemessenen Temperaturen belegen, daß der Kälteeintrag von der kalten Luft in das Wasser durch das geschredderte Eis wesentlich verringernt wird, insbesondere im Vergleich zum gewachsene Eis, aber auch im Vergleich zum Schollen Eis. Durch die rauhe, unebene Oberfläche des geschredderten Eises wird außerdem die zusätzliche Abkühlung durch Wind reduziert. Durch die mehrfach gebrochene Oberfläche des geschredderten Eises und die dunklere Färbung wird zudem die Sonnenabstrahlung erheblich verkleinert, so daß die Wärmeaufnahme erhöht wird.

 Bei den Einsätzen in diesem Winter hat sich gezeigt, daß das geschredderte Eis, das bei starkem Frost zusammenfrieren kann, bei Durchfahrt eines Schiffes wieder in kleine Stücke zerbricht, da bei dem geschredderten Eis die Stücke nur punktuell zusammenfrieren können. Bei konventionellem Eisaufrusch durch Eisbrecher frieren dagegen über einander geschobene Einschollen zu dicken Paketen zusammen.

Im Gegensatz zu der Erfahrung der Wasser- und Schifffahrtsverwaltung mit der herkömmlichen Eisbrechtechnik, nach der man die Wasserstraße an Frosttagen in Ruhe lassen sollte, besteht mit dem rechtzeitigen und durchgehenden Einsatz der Möbius-Eisschredder die Möglichkeit, das Eis so zu zerkleinern und klein zu halten, daß damit der Betrieb auf den Wasserstraßen aufrechterhalten werden wird, und zwar ohne daß Folgeschäden an den Schifffahrtsanlagen und an den Binnenschiffen entstehen. Dies gilt sowohl für die Kanalstrecken der Binnenwasserstraßen als auch entsprechend für die Flußstrecken.

Durch den Eisschreddereinsatz wird das Eis soweit zerkleinert, daß es mit der Strömung abfließen kann, ohne daß sich an Engstel len, Wehren oder Schleusenanlagen Eistauungen bilden können. Es kann davon ausgegangen werden, daß die Probleme auf Main, Mosel, Neckar, aber auch auf der Donau durch den Eisschreddereinsatz weitgehend minimiert werden können, so daß auch hier Schifffahrtsstörungen und Behinderungen der Schifffahrt, wie auch die großen Gefahren von Eisstau und Eisbarrieren vermieden werden können. Sehr vorteilhaft ist die Möglichkeit der Anbau-Eisschredder, auch unter Wasser arbeiten zu können, da auf diese Weise Grundeis, Eissversatz und Eisbarrieren wirksam bekämpft oder rechtzeitig, d.h. vor ihrer Entstehung, beseitigt werden können und das geschredderte Eis mit der Strömung gefahrlos abtransportiert werden kann.

Das mit den Eisschreddern zerkleinerte Eis kann über Wehre, Überläufe, aber auch über spezielle Förderanlagen aus dem Bereich der Wasserstraße abgeführt werden. Da das geschredderte Eis auch in kleinen Flüssen schadlos aufgenommen und abgeführt werden kann, ergibt sich hieraus die Möglichkeit, die Eismenge im Bereich der Wasserstraße zu reduzieren und das Wasser durch zuzufließendes wärmeres Wasser zu ersetzen.

Der Einsatz der Möbius-Eisschredder in den Bereichen der Schleuseneinfahrten, Vorhafen, Liegestellen etc. hat gezeigt, daß das Schollen Eis mit diesen Geräten so wirksam zerkleinert wird, daß der Schleusenbetrieb und die Schifffahrt ermöglicht und aufrechterhalten werden können. Dies wurde z.B.
den Schleusen Anderten, Scharnebeck, Uelzen, Sülfeld und Rothensee gezeigt.
Nach den in diesem Winter bei den Einsatz-
zen gewonnenen Erkenntnissen und Erfah-
rungen kann davon ausgegangen werden,
daß mit dem Einsatz von Eisorschreddern der
durchgehende Betrieb auf den Wasser-
straßen im Bereich der WSD Mitte auf mehr
als 300 km Länge bei Frostwetter sicherge-
stellt werden kann. Der Umfang des Geräte-
einsatzes ist von den Temperaturen, von der
Temperaturentwicklung und von der Dauer
des Frostwetters abhängig. Es werden 2 bis
3 Walzenschredder und 2 bis 3 An-
bauschredder erforderlich werden, die ent-
sprechend der Eisentwicklung bis zu 24
Stunden/Tag und 7 Tagen/Woche eingesetzt
werden können.
Voraussetzung für die Aufrechterhaltung des
Schifffahrtsbetriebes ist, daß die o.g. Geräte
rechtzeitig und an den vorbestimmten Stel-
en bereitgestellt werden. Es sollte jeweils
ein Walzenschredder im westlichen und öst-
lchen Bereich des Mittellandkanals und ein
weiterer Walzenschredder im Bereich der
Elbe-Seitenkanäle bereitstehen und bereits
bei beginnender Eisbildung eingesetzt wer-
den. Diese Geräte können und sollten über-
greifend auch in den Streckenabschnitten
der Wasser- und Schifffahrtshauptleitung Ost und
West eingesetzt werden, damit der Schiff-
fahrtsbetrieb auf möglichst langen Strecken
ermöglicht und aufrechterhalten wird.
Den Walzenschreddern wird jeweils ein Pon-
tonbagger mit Anbauschredder zugeordnet,
die insbesondere im Bereich der Abstiegsbau-
werke, der Vorhöfen, der Liegestellen, aber
auch in den Streckenabschnitten und in den
Stichkanälen entsprechend der Eis- und Be-
triebsentwicklung eingesetzt werden sollen.
Die Firma Möbius bietet an, für die Wasser-
und Schifffahrtshauptleitung die erforderliche
Anzahl Walzen- und Anbau-Eisschredder zu
bauen, vorzuhalten und weiterzuentwickeln,
sowie die anfallenden Kosten für Bau und
Vorhaltung vorzufinanzieren. Durch entspre-
chende jährliche Leasingraten werden die
Geräte abgezahlt, wobei Einsätze im Eiswin-
ter – nur die entsprechend der gemeinsam
mit dem Auftraggeber abgestimmten Ein-
satzpläne gesondert – nach Vertragssätzen
abgerechnet werden.
Die Arbeitsbreite der Walzenschredder ist
auf die Durchfahrtsbreite der Schleusen ab-
gestimmt. Durch seitliche Anbauteile wird die
Breite vergrößert, so daß die geschredder-
ten Bahnen auch von Großmotorgüterschif-
en befahren werden können.
Bei 2 Durchfahrten mit Walzenschreddern
wird eine Schifffahrtsbreite von ca. 25,0 m
hergestellt. Verbreiterungen in Kurven-
strecken, Einfahrbereichen zu Schleusen
oder Häfen etc. können durch zusätzliche
Fahrten beliebig breit hergestellt werden.
Bei den Einsätzen des Walzenschredders
hat sich als besonderer Vorteil herausge-
stellt, daß der Walzenschredder eine gatte
Begrenzung oder Kante zum Randeis her-
stellt. Damit kann die Schifffahrtsbreite weit-
gehend ausgenutzt werden, ohne daß Gefa-
hr für das Schiff durch Eisvorsprünge be-
steht, wie sie bei herkömmlicher Eisbrech-
technik entstehen.
Ein weiterer Vorteil der Herstellung der glat-
ten Eiskanten zum Randes besteht darin,
daß die Breiten bzw. Flächen, in denen Eis
gebrochen oder zerkleinert wird, begrenzt
werden. Für den Fall, daß bei extremen
Winterwetter mit langanhaltenden, äußerst
tiefen Temperaturen der durchgehende Eiss-
chreddereinsatz und die durchgehende Schifffahrt eingestellt werden müßten, ergibt
der Eisschreddereinsatz auch unter diesen
Umständen sehr vorteilhafte Auswirkungen,
weil die Vorlaufzeit (8 bzw. 10 Tage bis zur
Eissperre) und die Nachlaufzeit nach
Frostabschwächung bis zur Aufhebung der Schifffahrtssperre auf wenige Tage reduziert wird.
Der Einsatz der Möbius-Eisschredder wird und soll nicht zur Verdrängung der bisher eingesetzten Eisbrecher führen. Die Eis-
DBR-Wintertechnik hilft der Binnenschifffahrt: Keine Kapitulation vor dem Eis!

Hans-Wilhelm Dünner, Geschäftsführer der Deutschen Binnenreederei GmbH

Die technische Realisierung

Der Eispflug kann sowohl mit dem Schubboot als auch mit dem Schubverband starr gekoppelt werden, wobei die mit diesem Gerät gekoppelten Einheiten keine Eisverstärkungen benötigen. Während beim Eisbrecher das Eis durch Druck von oben nach unten gebrochen wird, wird beim Eispflug das Eis durch Druck von unten nach oben gebrochen und seitlich auf das Randsigel geschoben.

Der Eispflug wurde in rechteckiger Pontonform mit einem verbreiterten Vorschiffsteil in Form eines Pfuges gebaut. Er hat eine Länge von 16,10 m und eine Breite von 8,16 m (vorn 9,20 m). Der Boden ist 600 mm vor Spant 24 um 216 mm angehoben. Dadurch ergibt sich eine Auftriebskomponente unter Einsatzbedingungen. Die Balkenbucht ist als Knickbucht ausgebildet. Im Mittelschiffsbe reich ist das Deck am Spant 12 von 2150 mm auf 2692 mm nach oben versetzt. Durch zwei wasserabgewechselte Schotten bei Spant 3 und Spant 12 wird der Eispflug in drei Abteilungen unterteilt: dem Vorschiff mit doppelflügeligem Schnabelpflug, dem Mittelschiff mit Ballastrum und dem Hinterschiff mit Kupp lungsvorrichtung. Das Vorschiff ist durch eine Decksleuke zugänglich und kann ebenfalls zur Aufnahme von Ballast genutzt werden. Im Mittelschiffsüberbau befindet sich ein bis zur Basis reichendes Schneideblech zur Eisauf-

Das innovative Eisplugsystem, welches sich schon in Eiswintern regelmäßig auf den Berliner und Brandenburger Wasserstraßen bewähren konnte, ist auch auf anderen Wasserstraßen durchaus einsetzbar. Zum Betrieb dieses Systems an Gütermotorschiffen muß der Eisplugs jedoch konstruktiv modifiziert werden.
Binnenschifffahrt bei Eisbedeckung

Dr.-Ing. Karl-Heinz Rupp, Hamburgische Schiffbau-Versuchsanstalt GmbH

1. Einleitung

Die HAMBURGSCHEN SCHIFFBAU-VERSUCHSANSTALT GmbH (HSV) arbeitet seit mehr als 80 Jahren weltweit auf den Gebieten der Hydrodynamik und verwandten Fachgebieten als eine Forschungseinrichtung im Dienst des Kunden. Die Eistechnik ist eines der Fachgebiete der HSV. Auf diesem Gebiet werden Modellversuche im Eis seit etwa 50 Jahren durchgeführt. Die Schwerpunkte in der Eistechnik der HSV sind:

- Modellversuche mit eisbrechenden Schiffen (z.B. Eisbrecher, eisbrechende Schiffe für jeden Einsatz)
- Modellversuche mit Bauwerken im Eis (Offshore Anlagen, Brückenpfeiler, Belastungen auf Piers)
- Großausführungsversuche an Bauwerken und mit Schiffen im Eis
- Numerische Eisesbrechtechnik (Berechnung von: Widerstand im Eis, Stoffflaten, Schollenbewegung am Schiffsrumpf und ähnlichen Bauwerken)

2. Ausfallzeiten durch Eis

Die letzten beiden Winter haben gezeigt, daß die Binnenschifffahrt besonders im Osten und Süden Deutschlands aufgrund von Eis für mehrere Wochen zum völligen Erliegen kam. Dabei waren diese Winter, zum mindesten im Norden Deutschlands, nicht besonders streng, sondern in den vorangegangenen Jahren waren die Winter so mild, daß das Problem Eis hinter anderen Problemen dieses Verkehrszweiges zurücktrat. Sperrtage aufgrund von Eis sowie Vereisungstage werden am Beispiel des Havelkanals aufgezeigt. Im Zeitraum von 1952 bis 1993 war der Kanal durchschnittlich 26 Tage pro Jahr gesperrt. Die Spanne reicht von 0 bis 100 Sperrtagen.

Tabelle 1: Vereisungs- und Sperrtage des Havelkanals (1952 bis 1993)

<table>
<thead>
<tr>
<th>Vereisungs-</th>
<th>Sperrtage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchschnitt</td>
<td>53</td>
</tr>
<tr>
<td>Minimal</td>
<td>0</td>
</tr>
<tr>
<td>Maximal</td>
<td>116</td>
</tr>
</tbody>
</table>

Quelle: WSD-Ost

Eine Ausfallzeit von 30 Tagen z.B. bedeutet, daß 1/3 der Transportkapazität und dadurch die Einnahmen ausfallen, während die Kosten zwar etwas reduziert sind, aber weiterhin anfallen. Diese und andere Ausfallzeiten erschweren es der Binnenschifffahrt, neue Kunden zu gewinnen.

3. Ziele des Vorhabens

Es ist das Ziel dieses Vorhabens, Grundlagen zu schaffen, daß die Navigationsperiode schrittweise ausgedehnt werden kann, so daß die Sperrtage möglichst gering oder in „normalen“ Wintern ganz entfallen können. Dies gelingt allerdings nur, wenn die Wasser- und Schifffahrtsverwaltungen die Binnenschifffahrt unterstützen. Hierzu besteht
keine Pflicht, denn nach dem WaStrG § 35 Abs. 1 erfolgt der Einsatz von Eisbrechern der WSV nur, wenn die wirtschaftliche Vertretbarkeit des Einsatzes gegeben ist. Durch großzügige Auslegung dieses Gesetzes könnte der Binnenschiffahrt im Winter geholfen werden.

Im laufenden F+E-Vorhaben wird der Schwerpunkt auf das eisbrechende Binnenschiff und ein neukonzipiertes eisbrechendes Schubboote gelegt, die zusammen mit existierenden Schiffsformen in unterschiedlichstem Eis wie ebenem Eis (Kerneis), Scholleneis, zusammengeflößertem Scholleneis, Eisschredder, zusammengeflößertem Eisschredder untersucht wurden. Die Auswertung der Versuchsergebnisse ist noch nicht abgeschlossen, dennoch lassen sich bereits jetzt einige Aussagen über die Eisschirmmöglichkeiten machen. Von diesen Versuchsergebnissen ausgehend, erwarten wir Antworten, wie der Verkehr aufrecht erhalten werden kann, auch mit den existierenden Binnenschiffen. Für die Verbesserung der Eisschirmfähigkeit haben wir die Schiffsform eines Leichters und eines Schubbootes entworfen.

4. Kurze Systembetrachtung

Der Binnenschiffsverkehr im Eis kann nur stattfinden, wenn auch die Schleusen, Häfen und die Kanäle für den Verkehr im Eis geeignet sind. Diese Eignung ist teilweise vorhanden oder kann durch Nachrüsten erreicht werden. Eine weitere Möglichkeit ist die Taktik im Handling mit Eis. Besonders hiervon erwarten wir Anregungen, wenn die Binnenschiffahrt im Eis erst einmal in Fahrt gekommen ist.

Die Binnenschiffahrt auf Seen hat gegenüber den Kanälen den Vorteil, daß meist mehr Platz vorhanden ist, so daß bei Bedarf auch eine weitere gebrochene Rinne parallel zur alten Rinne angelegt werden kann. Außerdem ist der Wasserkörper wesentlich größer, so daß im Vergleich zum Kanal mehr relativ „warmes“ Wasser zur Verfügung steht, welches die Eisbildung während einer Kälteperiode bei Schiffsvorbehrverkehr mindert. Nachfolgend eine erste Übersicht zu Punkten, die bei der Eifahrt auf Kanälen zu beachten sind:

Binnenschifffahrt bei Eisbedeckung auf Kanälen

Einfluß auf die Fahrzeuge:

Binnenschiff:

- Motorgüterschiffe und Leichter
- Leichter mit eisbrechender Bugform
- Eisbrechendes Schubboote

Binneneisbrecher

Für alle Fahrzeuge muß besonders betrachtet werden:

- Schiffsformen
- Antriebsleistung und Geschwindigkeit
- Manövrierfähigkeit im Eis
- Festigkeit des Schiffsrumpfes
- Antriebskonzepte

Maßnahmen:

- Eisschiffstechnisch günstigere Schiffsform wählen
- In Abhängigkeit von der Festigkeit des Rumpfes nicht die maximal mögliche oder erlaubte Schiffsgeschwindigkeit fahren,
wenn große Eisschollen vorhanden sind, zur Verminderung der Eistöße auf den Bug
• Anzahl der Propeller-Eis-Kontakte durch entsprechende Schiffsform vermindern
• Eistöße auf den Propeller durch Einbau einer Rutschkupplung mindern, um die Antriebsanlage zu schonen und zu schützen

Eisbrechhilfen
(„Möbius Eisschredder", Eispfug, Eisbrech- vorsatz) sind Geräte, die mit Hilfe anderer Fahrzeuge eine Eisrinne brechen können.

Einfuß auf Kanal und Schleuseneinrich- tung
Funktionsfähigkeit der Schleuse
- Schleusentore
- Vereisen der Wände und Poller
- Eisverstopfung an Wassereinlässen und Pumpen
- Eisansammlung in der Schleusenkammer
- Eisansammlung im Schleusenvorhafen

Maßnahmen:
- Luftsprudelanlagen
- gezielt Quellströmung mit Wasser vom Boden erzeugen oder mit warmem Kühlwas- ser, sofern vorhanden,
- Schleusenkammer im Oberwasser über Nacht stehen lassen, um ein Abkühlen der Wände zu vermeiden
- Wassereinlässe möglichst großflächig ausführen, damit Strömungsgeschwindig- keit herabgesetzt wird, Gitter und Freispül- möglichkeit vorsehen
- möglichst glatte Oberflächen von Schleusenkammer und -tore, Heizungen an den Dichtungen und eventuell in der Wasserlinie der Schleusenkammer im Oberwasserbereich vorsehen, u.a.
- Kombination der Maßnahmen

Funktionsfähigkeit des Kanals
- Vermeiden oder vermindern von Beschä- digungen der Kanalböschung durch Eis

Maßnahmen:
- Schiffsgeschwindigkeit reduzieren, damit die durch die Fahrzeuge hervorgerufenen Wellen möglichst klein sind, damit am Ufer festgefrorene Eisschollen die Uferbefesti- gungssteine nicht herausbrechen. Weiter ist zu erwarten, daß durch kleine Schiffsgeschwindigkeiten die Eistöße auf das Ufer vermindert werden. Es kann auch ge- lingen, daß ein Streifen Eis längs der Böschung des Kanals erhalten bleibt, der die Böschung schützt. Diese gemachten Aus- sagen müssen in der Praxis überprüft wer- den.

Verkehrsoorganisation
Eine Verkehrslenkung ist für den sicheren Verkehr auf eisbedeckten Kanälen hilfreich. Dadurch kann organisiert und geregelt werden:
- Eisbrechereinsatz (Behördenfahrzeug)
- Einsatz eisbrechender Schubboote (Charter)
- Eisbrechereinsatz (Eisbrechhilfen) koordi- nieren, eventuell unterscheiden nach Strecken und Hafen
- Konvoizusammenstellung, Reihenfolge der Schiffe eines Konvois unterscheiden nach der Eisbrechfähigkeit der Schiffe
- Regelung des Gegenverkehrs
- Erstellen einer gebrochenen Eisrinne und Pflege dieser Eisrinne (z.B. durch eine Geschwindigkeitsbegrenzung, damit nicht
durch Bug- und Heckwellen die Eisränder in große Schollen gebrochen werden. Diese großen Eisschollen treiben in die Eistrinne und können für das nachfolgende Schiff eine Gefahr darstellen)
— besonders wichtig: praktische Erfahrungen berücksichtigen.

Investitionen

Wenn konsequent das Eis auf Kanälen für die Binnenschifffahrt gebrochen wird, so sind Investitionen erforderlich. Diese Investitionen fallen in den Aufgabenbereich der Wasserstraßenverwaltung und der Binnenschiffssreeder. Um die Summe der Investitionen möglichst klein zu halten, sollte überlegt werden, ob ein Schubboot auch als Kanal- eisbrecher einsetzbar ist. Schubboote für eine solche Mehrfachnutzung existieren noch nicht. Längerfristige Charterverträge mit den Wasserstraßenverwaltungen müssen für den Bau solcher Schiffe mit Mehrfachnutzung abgeschlossen werden. Weiter sind freie Schubbootkapazitäten in einer Reederei in der Winterzeit eine wichtige Voraussetzung hierfür.

Eine zwischen Reeder und Verwaltung geteilte Nutzung eines Fahrzeugs wird zur Zeit projektiert für schwedische Küsteneisbrecher, die hauptsächlich als Versorger arbeiten. Im Bedarfsfall stehen sie der Verwaltung für die Eisbrechaufgaben zur Verfügung.

Diese Liste von Kriterien dieses Abschnitts darf nicht als vollständig angesehen werden. Es wäre daher hilfreich, wenn Binnenschiffer und Reeder, Behörden, Versicherer, Wasserbau- und Schiffstechniker ihre bisherigen Erfahrungen zu diesem Thema zur Verfügung stellen würden.

5. **Großausführungsmessungen im F+E-Vorhaben**

Im Januar 1997 hat die HSVA auf dem Elbe- Seiten-Kanal bei Scharmebeck Eisfestigkeitsversuche durchgeführt. Weiter wurden Eisdickenprofile aufgemessen. Die Ergebnisse zeigen, daß zwischen Korneis und zusammengefrorenem Brucheis sich die Biegefestigkeit praktisch nicht unterscheidet, die horizontale Druckfestigkeit um

![Eisdickenlängsprofil auf dem ESK](image-url)
½ geringer und die vertikale Druckfestigkeit nur noch 58% der von Kerneis entspricht (Tabelle 2). Dies erleichtert etwas das Eisbrechen. Das Eisdickenprofil längs des Elbe-Seiten-Kanals weist erhebliche Schwankungen auf (Diagramm 1). Der Maximalwert beträgt 50 cm, der Minimalwert 10 cm und der Mittelwert liegt bei 18 cm. Einzelne dick zusammengefrorene Eisklötze behindern nicht besonders das Eisbrechen, sie können aber eine Gefahr für die Propeller darstellen.

Tabelle 2: Ergebnisse der Eisversuche bei Scharnebeck

<table>
<thead>
<tr>
<th>Typ</th>
<th>Kerneis</th>
<th>Zusammengefrorenes Bruch Eis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Mittelwert aus der Probenanzahl N)</td>
<td>(Mittelwert aus der Probenanzahl N)</td>
</tr>
<tr>
<td>Biegefestigkeit [kPa]</td>
<td>538 (N=7)</td>
<td>525 (N=5)</td>
</tr>
<tr>
<td>Druckfestigkeit horizontal [kPa]</td>
<td>1849 (N=7)</td>
<td>1234 (N= 5)</td>
</tr>
<tr>
<td>Druckfestigkeit vertikal [kPa]</td>
<td>3129 (N=6)</td>
<td>1816 (N=6)</td>
</tr>
</tbody>
</table>

Diagramm 1

Eisdickenlängsprofil auf dem ESK

6. Modellversuche

Im großen Eistank der HSVA (Länge 72 m, Breite 10 m, Wassertiefe 2,0 m und 5,0 m) wurde der Flachwasserboden eingebaut, auf dem ein Kanal im Maßstab 1:12 modelliert wurde. Die Abmessungen des Kanals in der Groβausführung betragen: Wasserspiegelbreite 33 m, Wassertiefe 3 m und eine Böschung von 1:3. In diesem Modellkanal wurde Modellleis hergestellt, das in der Natur eine Decke von ca. 0,2 m hat. Die Biegefestigkeit des Eises beträgt ca. 800 kPa. Die Biegefestigkeit wurde größer gewählt als die gemessenen Werte dargestellt in Tabelle 2, da bei diesen Messungen die Lufttemperatur bereits über Null Grad war.
Es wurden 3 verschiedene Leichterbugformen als Modell gebaut. Eine Bugform entsprach einer traditionellen Kahnform (Bild 1), die zweite Bugform war ein üblicher Schubleichter der Deutschen Binnenreederei für die Eifahrt, und die dritte Bugform wurde als ein eisbrechender Leichter entworfen. Diese Leichter (Länge 65 m, Breite 8,2 m, Tiefgang 2,0 m) wurden geschoben von einem eisbrechenden Schubboot (Länge 17 m, Breite 8,2 m, Tiefgang 1,5 m). Das eisbrechende Schubboot und der eisbrechende Leichter wurden von der HSVA entworfen.
Mit den drei verschiedenen Leichterformen und dem eisbrechenden Schubboot wurden Versuche unter verschiedenen Eisbedingungen (ebenes Eis (Kerneis), Scholleneis, zusammengebrochenes Scholleneis, Eisbrecher, zusammengebrochener Eisbrecher) zur Ermittlung von Widerstand und Antriebsleistung im Eistank der HSVA durchgeführt. Das Schubboot alleine wurde als Kanaleisbrecher in den verschiedenen Eisbedingungen untersucht. Die Auswertung dieser Versuche ist noch nicht abgeschlossen.
Ergänzend zu der Beziehung zwischen Antriebsleistung, Geschwindigkeit und Eisverhältnissen in Geradeausfahrt wurden verschiedene Manöver im Eis mit den frei fahrenden Modellen durchgeführt. Das eisbrechende Schubboot kann als Kanaleisbrecher eingesetzt werden. Es ist möglich, mit dem Schubboot ebene Eis oder zusammengebrochenes Scholleneis zu brechen und unter allen Eisbedingungen des Kanals zu wenden und die zuvor gebrochene Eisrinne definiert zu verbreitern. Das Verbreiten der einmal gebrochenen Eisrinne ist notwendig, um genügend Platz in der Eisrinne für einen Schleppverband oder ein Motorgüterschiff bei der Kurvenfahrt zu haben. Bei den Drehkreisversuchen zeigte sich, daß bei dem untersuchten Längen-/Breitenverhältnis des Schubverbandes von etwa 10 im ebenen Eis trotz Ruderlage der Verband gerade-

Abb. 1
aus fuhr. Zur Verbesserung der Drehfähigkeit haben wir eine Verbreiterung am Bug des Leichters angebracht. Mit Hilfe dieser Verbreiterung (Reamer) konnte eine Kurve im ebenen Eis gefahren werden. In der Großausführung muß diese Verbreiterung so konstruiert sein, daß sie bei Bedarf schnell und einfach entfernt werden kann.

Das Passieren eines Leichters wurde mit dem Schubverband im Kanal durchgeführt. Hierbei zeigte sich, daß die Eisschollen, die sich zwischen Schubverband und dem passierenden Leichter befanden, wie ein Fender wirkten, so daß dieses Manöver deutlich einfacher auszuführen war als im eisfreien Wasser.

Bei größeren Kursänderungen in Richtung Pier wurde wegen Platzmangel im Kanal das Schubboot abgekoppelt und der Leichter im Eis „abgestellt“. Das Schubboot brach im Hafenbereich das Eis in möglichst kleine Schollen. Der Leichter bleibt unter normalen Verhältnissen an der abgestellten Stelle, da das Eis den Leichter hält und er somit nicht vertreiben kann. Nachdem das Eis im Hafengebiet klein gebrochen ist, wird wieder angekoppelt und angelegt. Hierbei wurde so verfahren, daß der Verband in die Vorspring einfuhr und durch Legen des Ruders mit dem Heck in Richtung Pier schwenkte. Bevor das Eis zwischen Schiffswerk und Pier einklemmt, wird der Spalt wieder vergrößert. Zusammen mit den vorausarbeitenden Propeller entstehen dadurch eine Strömung, die das Eis aus dem Spalt entfernt. Dieses Manöver wurde mehrmals durchgeführt.

In dieser Situation wird das Eis zusammen gedrückt, wobei noch zwei der oben be-
geschriebenen Schwenkmanöver erforderlich waren, um parallel längs der Pier zu kommen. Die Kursänderung betrug hierbei 90°, die Pier war 120 m lang und der Koppelverband 85 m.

7. Schlußbemerkung

Herausgeber: Deutscher Wasserstraßen- und Schifffahrtsverein Rhein-Main-Donau e.V., Nürnberg
Druck: Verlagsdruckerei Schmidt GmbH, Neustadt/Aisch
ISSN: 1433-1381
Lithos: Verlagsdruckerei Schmidt GmbH, Neustadt/Aisch
Fotos: Möbius Bau, Deutsche Binnenreederei, HSV

Schadenersatz für fehlerhafte, unvollständige oder nicht erfolgte Angaben ist ausgeschlossen.